

Execution Configuration Guide

Funded by the European Union - NextGenerationEU. However, the views and opinions expressed

are solely those of the author(s) and do not necessarily reflect those of the European Union or

the European Commission. Neither the European Union nor the European Commission can be

held responsible for them

 3

Index
Introduction .. 4

1. Principles of sustainability and efficiency in AI execution .. 4

2. AI Model Execution Configuration Methodologies .. 5

2.1. Installation and versioning of libraries ... 5

2.2. Planning and distribution of tasks in algorithms .. 6

3. Software and hardware configuration for energy efficiency ... 7

3.1. Hardware optimization ... 7

3.2. Software optimization .. 8

4. Distributed AI Model Execution .. 9

4.1. Distributed execution architectures (data parallelism, model parallelism, federated

learning) .. 9

4.2. Tools and frameworks (Horovod, DeepSpeed, Ray, PyTorch DDP) 12

4.3. Use cases and best practices .. 12

5. Practical recommendations and application cases .. 13

5.1. Checklist for setting up efficient execution environments 13

5.2. Model Optimization Quick Guide ... 13

5.3. Case Study: Efficient Distributed Deployment with Sustainable Blockchain 14

 4

Introduction

The aim of this guide is to provide a clear and practical methodological framework for configuring,

training, deploying and operating artificial intelligence (AI) models efficiently, reproducibly,

safely, and with minimal environmental impact. It targets developers, ML engineers, DevOps

teams, infrastructure managers, and AI project managers. The idea is that they can apply specific

good practices in installation, versioning, hardware, software, distributed execution, and consider

technologies such as Blockchain in their design, always with energy sustainability criteria.

1. Principles of sustainability and efficiency in AI execution

Some fundamental principles that should guide the configuration and operation of AI:

• Energy transparency: documenting, measuring and reporting the energy consumption of

the models ("energy footprint"). In the European Union, the recently enacted EU AI Act

requires technical documentation that includes a breakdown of energy consumption for

General-Purpose AI Models.

• Reproducibility and traceability: training is not enough - you must be able to replicate

the results, including exact versions of libraries, environments, and hardware/software

configuration.

• Proactive optimization: Apply model optimization techniques (pruning, quantization,

distillation, sparsity) before deploying to reduce consumption without significantly

degrading performance.

• Use of clean energy: choose suppliers or locations with renewable sources, prefer times

of the day when the electricity grid has a better renewable mix.

• Efficiency over scale: more is not always better; distribute loads, parallelize only when it

contributes clearly, avoid overcapacity.

• Regulatory and ethical compliance: comply with European directives, emerging

standards, local energy efficiency and emissions regulations.

 5

2. AI Model Execution Configuration Methodologies

This block addresses the technical mechanisms by which it is ensured that the execution of

models is reproducible, safe, optimized and with controlled version.

2.1. Installation and versioning of libraries

Virtual environments and containers (conda, venv, Docker)

• Using virtual environments (venv, conda) or containers (Docker) allows you to isolate

dependencies, avoid conflicts, ensure that specific versions are maintained.

• Docker also makes it easy to pack not only libraries, but also operating system versions,

drivers, etc., which improves reproducibility.

Versions control (pip freeze, poetry, requirements.txt, lockfiles)

• Registering exact versions of libraries is essential: a requirements.txt with fixed versions

or using poetry.lock or Pipfile.lock to make all developers/servers run with identical

versions.

• Hashes of package files (as pip-freeze or poetry do) can also be used to prevent

unexpected changes.

Compatibility and reproducibility

• Check compatibility between dependent libraries (e.g. CUDA versions, GPU drivers, tensor

library versions) to avoid consumption spikes due to incompatibilities that trigger

recalculations or inefficient use.

• Maintain reproducible test environments for benchmarking consumption, performance

and verify that optimizations do not degrade accuracy or introduce bugs.

Software Lifecycle Management

CI/CD Practices

• Integrate automatic tests that verify that changes in code or libraries do not unduly

increase consumption: for example, performance tests, GPU/CPU usage tests, energy

tests if possible.

• Automate reproducible deployments: model versions, binary artifacts, containers, etc.

Integration with repositories and library registration

• Use internal package repositories where approval of new versions is controlled (e.g. an

internal PyPI repository or mirror).

 6

• Record libraries in use, approved versions, update history, so that you can revert if a new

version introduces energy regression or failures.

Security and traceability of dependencies

• Dependency scanning for vulnerabilities.

• Package signature verification.

• Traceability: knowing which version of which library was used to generate a particular

model, so that it can be reproduced or audited later.

2.2. Planning and distribution of tasks in algorithms

Parallelization strategies (multi-threading, multi-processing)

• Adequate parallelization to take advantage of multiple CPUs, cores, threads, without

generating excessive overhead that consumes more energy than profit.

• In training models, use data parallelism when feasible to amortize cost between nodes,

but be careful with inter-node communication that can introduce latencies and extra

consumption.

Use of accelerators (GPU, TPU). Execution in hours with the best sustainable energy mix

• Selection of appropriate accelerator types: modern GPUs, TPUs, specialized hardware if

available. Verify energy efficiency per flops/watt.

• Plan training or inference at times when the electricity grid has a higher proportion of

renewable sources (for example, mornings/evenings depending on the region).

• In the EU, some regulations also call for transparency in energy consumed and energy

sources, which can incentivize this practice. E.g.: Regulation (EU) 2024/1689, which

establishes harmonized standards in the field of artificial intelligence, requires a

breakdown of energy consumption.

Load balancing and efficient scheduling

• Distribute tasks so that no node is under- or overused.

• Use scheduling techniques that consider efficiency: group similar tasks, avoid frequent

context changes, minimize data movements.

• Leverage batch processing in inference to reduce overhead.

 7

Infrastructure as Code (IaC)

Using Infrastructure as Code (IaC) allows you to define and manage compute infrastructures—

instances, networks, storage, hardware accelerators, and scaling policies—using versioned,

replicable, and auditable code. This practice is especially relevant in the execution of AI models,

where small variations in infrastructure can affect performance, energy consumption and results

obtained.

The addition of IaC brings the following key benefits:

• Execution reproducibility: Allows you to accurately recreate the infrastructure used for

training or inference, including instance types, number of nodes, accelerators (GPU/TPU),

and network configurations.

• Infrastructure version control: As with libraries and code, the infrastructure is versioned,

facilitating audits, rollback, and comparison between configurations.

• Energy and cost optimization: IaC makes it easy to define policies for autoscaling,

automatic shutdown of idle resources, and explicit selection of energy-optimized

instances.

• Security and traceability: Configurations are documented as code, allowing for

systematic reviews, access controls, and compliance.

Among the tools commonly used for IaC in AI environments are Terraform, AWS

CloudFormation, Azure Bicep, Pulumi or Ansible, which allow the integration of infrastructure

provision within CI/CD pipelines.

3. Software and hardware configuration for energy efficiency

3.1. Hardware optimization

Cloud vs. on-premises instance selection

• Key factors: local energy cost, electricity generation mix in the area, data center

efficiency, latency, maintenance cost.

• The choice between cloud infrastructures and on-premises systems should be based on

the usage pattern and the requirements of the use case. The cloud is best suited when

the workload is variable or scalable, as it allows resources to be dynamically adjusted and

oversizing avoided, reducing energy consumption associated with underutilized

infrastructures. In addition, it is especially advantageous for projects in early phases,

pilots or use cases with intermittent peaks in demand.

 8

• Conversely, an on-premises system can be more efficient when workloads are stable,

intensive, and predictable over time, and when the organization has its own energy-

optimized data center. In these scenarios, hardware payback and direct control over

infrastructure can translate into more consistent and potentially more efficient power

consumption per unit of compute.

GPU/TPU and CPU settings for efficient consumption

• Use low-power modes when full performance is not needed; adjust clock frequency,

memory usage.

• Avoid overspecifying hardware: Better to use hardware with enough features to meet the

requirements rather than oversized hardware that is underutilized.

• Update drivers/firmware that allow power optimizations.

Dynamic voltage and frequency scaling techniques (DVFS)

• DVFS allows you to lower or raise the CPU/GPU frequency and its associated voltage

depending on the workload, reducing power consumption when the load is low or

moderate.

• On modern hardware it can be set so that the frequency is adjusted

automatically/manually. Impact must be measured in latency or throughput.

3.2. Software optimization

Optimized libraries (cuDNN, TensorRT, ONNX Runtime)

• Use libraries that take advantage of hardware capabilities to speed up calculation,

optimize convolution operations, etc., so that calculation time is reduced and therefore

energy consumed.

• ONNX Runtime, TensorRT, etc., offer optimizations for inference, operation merging,

memory usage.

Monitoring and efficiency metrics (GPU utilization, FLOPs, kWh)

• Have metrics on hardware utilization, energy usage, number of floating-point operations

(FLOPs), to evaluate how much energy is consumed per unit of task (e.g. per batch),

• Use profiling tools: e.g. monitor GPU/CPU usage, temperatures, memory usage; record

power consumption if the hardware supports it.

 9

• The CTN-UNE 71/SC 42/GT 1 specification "Evaluation of the energy efficiency of artificial

intelligence systems", developed as part of the PNAV, provides an exhaustive list of

profiling metrics and tools.

4. Distributed AI Model Execution

4.1. Distributed execution architectures (data parallelism, model parallelism,

federated learning)

• Data Parallelism: consists of replicating the entire model on multiple nodes (or GPUs),

distributing the data among them, forward+backward and finally synchronizing the

gradients. It is simple to implement; it has good scaling if communication between nodes

does not become a bottleneck. A recent study comparing frameworks such as Horovod,

PyTorch-DDP and DeepSpeed shows that for convolutional networks (ResNet50,

ResNet101, ResNet152) trained on ImageNet, a parallelization efficiency of more than

0.85 can be obtained using up to 256 GPUs, and around 0.75-0.80 with 1024 GPUs,

depending on the size of the model and the data loader.

• Model Parallelism / Mixture of Experts (MoE): When the model is too large to fit on a

GPU, or when certain parts can be parallelized in a specialized way. For example, the

DeepSpeed-MoE work shows that much larger MoE models can be trained with

improvements in inference and training cost compared to dense models of equivalent

quality: improvements of up to 4.5× faster and 9× cheaper in inference for certain large

models. Another paper, Hybrid Tensor-Expert-Data Parallelism in MoE Training, presents

a hybrid algorithm (combining data, tensor, and expert parallelism) for training giant MoE

models, with communication optimizations that reduce unnecessary data movement.

Federated Learning (FL): allows models to be trained in a distributed way on multiple end devices

(edge, IoT, mobile), avoiding data centralization. This approach has clear advantages in terms of

privacy and compliance, but it is not universally efficient or recommended in all scenarios. Its

suitability depends on multiple technical, operational and energy factors.

When Federated Learning is recommended

FL is suitable primarily when one or more of the following conditions are met:

1. Data that is highly sensitive or subject to regulatory restrictions

FL is especially useful when:

• Data cannot leave the device or local domain (e.g., healthcare, financial, industrial data).

https://urldefense.com/v3/__https:/sd.iso.org/documents/open/728815ee-0ed9-43f5-a911-e0369b59e5e4__;!!OrxsNty6D4my!-2Cg1v4wls9U74Y8mTxjb59ItwSzyiiZB0ewVboXw9LFRNbo45u1WIEVGSUZPhDRtoxdqz1683q177tiqiU-ypRVPz7xyKsT$
https://urldefense.com/v3/__https:/sd.iso.org/documents/open/728815ee-0ed9-43f5-a911-e0369b59e5e4__;!!OrxsNty6D4my!-2Cg1v4wls9U74Y8mTxjb59ItwSzyiiZB0ewVboXw9LFRNbo45u1WIEVGSUZPhDRtoxdqz1683q177tiqiU-ypRVPz7xyKsT$

 10

• There are legal or contractual restrictions that limit data transfer (GDPR, data

sovereignty).

In these cases, the additional energy cost of distributed training may be justified by the

privacy and compliance benefits.

2. Large volume of distributed data and high transfer cost

FL is efficient when:

• The volume of raw data is high.

• Sending data to the central server would have a higher energy and network cost than

periodically sending parameters or gradients of the model.

This scenario is typical in mobile devices or sensors with continuous data generation.

3. Relatively light or partially upgraded models

FL is most viable when:

• The models are compact (few parameters).

• Techniques such as partial layer updating, gradient compression, or incremental learning

are used.

This reduces computational cost and power consumption at participating nodes.

4. Non-Critical Real-Time Training

FL works best when:

• No rapid convergence is required.

• Latency is tolerated in model synchronization.

• Training takes place in wide-time windows (e.g. overnight).

This allows for scheduling runs in periods of lower energy load or greater availability of

renewable energy.

When Federated Learning is not recommended

There are scenarios where FL can be clearly inefficient or counterproductive:

1. High device heterogeneity

 11

FL becomes problematic when:

• The participating devices have very different capacities (CPU, memory, battery).

• Some nodes become stragglers, slowing down the overall process.

This increases the training time, the number of rounds needed and the total energy

consumption.

2. Large or very deep models

FL is not efficient when:

• The model has millions or billions of parameters.

• The cost of transmitting gradients or weights exceeds the cost of moving the data.

In these cases, communication becomes the main energy bottleneck.

3. Unstable or expensive communication networks

FL is not recommended if:

• Connectivity is intermittent.

• Bandwidth is limited.

• The energy cost of communication is high (e.g. low-efficiency mobile networks).

Communication overhead can negate any advantage of avoiding data centralization.

4. Need for strict control or full traceability

FL complicates:

• The complete audit of the training process.

• The exact reproducibility of results.

• Fine control of data quality.

In environments where traceability and reproducibility are critical (e.g., strict regulatory

validations), FL can introduce excessive complexity.

 12

4.2. Tools and frameworks (Horovod, DeepSpeed, Ray, PyTorch DDP)

• DeepSpeed, from its MoE module, has demonstrated not only scalability but also reduced

inference and training costs compared to equivalent dense models, thanks to its use of

expertise-capabilities, sparsity and memory optimization.

• Comparative Frameworks: As mentioned in Large scale performance analysis of

distributed deep learning frameworks... Horovod, DeepSpeed and PyTorch-DDP have

been compared in training large networks, measuring throughput, scaling efficiency,

performance in validation vs batch size, etc.

• Some federated learning implementations integrate communication compression,

adaptive client selection, offloading, etc., to improve energy efficiency. Example: AutoFL

optimizes convergence time and energy efficiency by considering system heterogeneity.

4.3. Use cases and best practices

Before scaling the execution of AI models in distributed environments, it is essential to carry out

systematic benchmarking and profiling of the system, in order to identify bottlenecks and

evaluate the real efficiency of the parallelism introduced.

The literature on parallel systems highlights that efficient scaling does not depend only on the

number of nodes or accelerators available, but also on a correct prior characterization of the

computational and communication behavior of the algorithm and its execution environment. In

particular, it is recommended to measure:

• CPU, GPU, and memory usage on each node.

• Execution latency and synchronization times.

• Effective bandwidth and volume of data exchanged between nodes.

• Impact of communication vs. computation on overall performance.

As described in classic studies on task planning in parallel systems, the absence of this prior

analysis can lead to inefficient scaling, where the increase in resources does not translate into

proportional performance improvements, and even increases total energy consumption due to

synchronization and communication cost overruns.

Therefore, good practices recommend:

• Analyze the model's parallelism pattern (data parallelism, model parallelism, hybrid).

• Identify phases dominated by computation versus phases dominated by communication.

 13

• Adjust the granularity of tasks and planning strategy before increasing the number of

nodes.

This approach enables informed decisions about scaling, maximizing performance and avoiding

configurations that are energy-inefficient.

5. Practical recommendations and application cases

5.1. Checklist for setting up efficient execution environments

Here is a checklist that can be used before training/deploying:

• Check library versions, dependencies, hardware compatibility.

• Use reproducible containers or virtual environments.

• Measure base energy consumption with standard configuration.

• Apply model optimization techniques (quantization, pruning, distillation).

• Select appropriate hardware, avoid underutilization.

• Plan execution in periods of greater renewable energy.

• Use optimized frameworks.

• In case of distributed or blockchain use, choose low-power consensus mechanisms.

• Document all configurations, metrics, versions.

5.2. Model Optimization Quick Guide

• Analyze model profile: computationally expensive parts, memory usage, operations that

can be optimized (convolutions, attention, etc.).

• Apply pruning: eliminate neurons or connections without much impact on accuracy.

• Quantization: Reduce accuracy (e.g. from FP32 to FP16, INT8) if tolerated.

• Distillation: training a lighter model that imitates a heavier one.

• Sparsity: using models that exploit partial structures of zeros.

• Validate the loss of accuracy vs. energy savings in real scenarios.

 14

5.3. Case Study: Efficient Distributed Deployment with Sustainable Blockchain

A possible use case could be:

• Federated training of a model (e.g. for health or IoT) where local nodes train on their own

data, using optimized versions of the lightweight model.

• Use of permissioned Blockchain to coordinate model updates, verify integrity, log audit.

• Execution of training/inference at times of the day with a high percentage of electrical

renewables.

• Constant monitoring of energy consumption, performance metrics.

• Benchmarking: Energy cost and performance vs. conventional centralized solution.

	Introduction
	1. Principles of sustainability and efficiency in AI execution
	2. AI Model Execution Configuration Methodologies
	2.1. Installation and versioning of libraries
	Software Lifecycle Management
	2.2. Planning and distribution of tasks in algorithms
	Infrastructure as Code (IaC)

	3. Software and hardware configuration for energy efficiency
	3.1. Hardware optimization
	3.2. Software optimization

	4. Distributed AI Model Execution
	4.1. Distributed execution architectures (data parallelism, model parallelism, federated learning)
	4.2. Tools and frameworks (Horovod, DeepSpeed, Ray, PyTorch DDP)
	4.3. Use cases and best practices

	5. Practical recommendations and application cases
	5.1. Checklist for setting up efficient execution environments
	5.2. Model Optimization Quick Guide
	5.3. Case Study: Efficient Distributed Deployment with Sustainable Blockchain

