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Introduccion

El objetivo de esta guia es proporcionar un marco metodoldgico claro y prdctico para configurar,
entrenar, desplegar y operar modelos de inteligencia artificial (IA) de forma eficiente,
reproducible, sequra, y con un minimo impacto ambiental. Se dirige a desarrolladores, ingenieros
de ML, equipos DevOps, responsables de infraestructura, y gestores de proyectos IA. La idea es
que puedan aplicar buenas prdcticas concretas en instalacion, versionado, hardware, software,
ejecucion distribuida, y considerar tecnologias como Blockchain en su disefo, siempre con
criterios de sostenibilidad energética.

1. Principios de sostenibilidad y eficiencia en la ejecucion de
A

Algunos principios fundamentales que deben guiar la configuracién y operacién de IA:

e Transparencia energética: documentar, medir y reportar el consumo energético de los
modelos (“energy footprint”). En la Unidn Europea, el recién entrado en vigor EU Al Act
exige documentacién técnica que incluya desglose del consumo energético para modelos
generales (“General-Purpose Al Models”).

¢ Reproducibilidad y trazabilidad: no basta con entrenar - se deben poder replicar los
resultados, incluyendo versiones exactas de librerias, entornos, y configuracion de
hardware/software.

e Optimizacion proactiva: aplicar técnicas de optimizacién de modelos (pruning,
cuantizacién, distillation, sparsity) antes de desplegar para reducir consumo sin degradar
significativamente el rendimiento.

¢ Uso de energia limpia: elegir proveedores o ubicaciones con fuentes renovables, preferir
momentos del dia en que la red eléctrica tenga mejor mix renovable.

o Eficiencia sobre escala: mas no siempre es mejor; distribuir cargas, paralelizar solo
cuando aporte netamente, evitar sobrecapacidad.

¢ Cumplimiento normativo y ético: cumplir con directivas europeas, estdndares
emergentes, regulaciones locales de eficiencia energética y emisiones.
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2. Metodologias de configuracion de la ejecucion de modelos
A

Este bloque aborda los mecanismos técnicos mediante los cuales se asegura que la ejecucidn de
modelos sea reproducible, segura, optimizada y con versidn controlada.

2.1. Instalacion y versionado de librerias
Entornos virtuales y contenedores (conda, venv, Docker)

e Uso de entornos virtuales (venv, conda) o contenedores (Docker) permite aislar
dependencias, evitar conflictos, asegurar que versiones concretas se mantengan.

o Docker facilita ademas empacar no solo librerias, sino versiones de sistema operativo,
drivers, etc., lo que mejora reproducibilidad.

Control de versiones (pip freeze, poetry, requirements.txt, lockfiles)

o Registrar versiones exactas de librerias es esencial: un requirements.txt con versiones
fijas, o usar poetry.lock o Pipfile.lock para que todos los desarrolladores / servidores
corran con versiones idénticas.

¢ También se pueden usar hashes de archivos de paquetes (como hace pip-freeze o poetry)
para evitar cambios inesperados.

Compatibilidad y reproducibilidad

e Verificar compatibilidad entre librerias dependientes (por ejemplo versiones de CUDA,
drivers GPU, versiones de tensor libraries) para evitar picos de consumo por
incompatibilidades que desencadenen recalculos o uso ineficiente.

e Mantener entornos de prueba reproducibles para benchmarking de consumo,
rendimiento y verificar que las optimizaciones no degradan la precision o introduce bugs.

Gestion del ciclo de vida del software
Practicas de CI/CD

o Integrar pruebas automaticas que verifiquen que los cambios en cédigo o en librerias no
incrementen indebidamente el consumo: por ejemplo tests de rendimiento, tests de uso
de GPU/CPU, tests energéticos si posible.

o Automatizar despliegues reproducibles: versiones de modelos, artefactos binarios,
containers, etc.
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Integracion con repositorios y registro de librerias

e Usar repositorios internos de paquetes donde se controle la aprobacién de versiones
nuevas (por ejemplo un repositorio PyPl interno o mirror).

o Registrar librerias en uso, versiones aprobadas, historial de actualizaciones, para poder
revertir si una nueva version introduce regresion energética o fallos.

Seguridad y trazabilidad de dependencias
e Escaneo de dependencias para vulnerabilidades.
e Verificacidn de firma de paquetes.

o Trazabilidad: saber qué versidn de qué libreria fue usada para generar un modelo
concreto, para poder reproducir o auditar después.

Planificacidn y distribucion de tareas en algoritmos
Estrategias de paralelizacion (multi-threading, multi-processing)

e Paralelizacion adecuada para aprovechar CPUs multiples, nucleos, hilos, sin generar
overhead excesivo que consuma mas energia que beneficio.

e En modelos de entrenamiento, usar paralelismo de datos (data parallelism) cuando sea
viable para amortizar coste entre nodos, pero tener cuidado con la comunicacién inter-
nodos que puede introducir latencias y consumo extra.

Uso de aceleradores (GPU, TPU). Ejecucion en horas con mejor mix energético sostenible

e Seleccién de tipos de aceleradores apropiados: GPUs modernas, TPUs, hardware
especializado si disponible. Verificar eficiencia energética por flops / watt.

¢ Planificar entrenamiento o inferencia en horarios en los que la red eléctrica tenga mayor
proporcién de fuentes renovables (por ejemplo mafianas/noches segln region).

e En la UE, algunas regulaciones también piden transparencia sobre energia consumida y
origen energético, lo que puede incentivar esta practica. Ej: Reglamento (UE) 2024/1689,
por el que se establecen normas armonizadas en materia de inteligencia artificial, exige
desglose del consumo energético.

Balanceo de cargas y programacion eficiente
¢ Distribuir tareas de modo que ningun nodo esté infra-o sobreutilizado.

e Uso de técnicas de scheduling que consideren eficiencia: agrupar tareas similares, evitar
cambios frecuentes de contexto, minimizar movimientos de datos.



> PROGRAMA NACIONAL
DE ALGORITMOS
VERDES

e Aprovechar batch processing en inferencia para reducir overhead.

Infraestructura como cédigo (Infrastructure as Code — laC)

El uso de Infrastructure as Code (laC) permite definir y gestionar infraestructuras de
computacién —instancias, redes, almacenamiento, aceleradores hardware y politicas de
escalado— mediante cdodigo versionado, replicable y auditable. Esta practica resulta
especialmente relevante en la ejecucion de modelos de IA, donde pequefias variaciones en la
infraestructura pueden afectar al rendimiento, consumo energético y resultados obtenidos.

La incorporacion de laC aporta los siguientes beneficios clave:

e Reproducibilidad de la ejecucidon: Permite recrear de forma exacta la infraestructura
utilizada para el entrenamiento o inferencia, incluyendo tipos de instancias, nimero de
nodos, aceleradores (GPU/TPU) y configuraciones de red.

e Control de versiones de la infraestructura: Al igual que ocurre con las librerias y el cédigo,
la infraestructura queda versionada, facilitando auditorias, rollback y comparacién entre
configuraciones.

e Optimizacion energética y de costes: laC facilita la definicion de politicas de
autoescalado, apagado automdtico de recursos inactivos y seleccién explicita de
instancias optimizadas para eficiencia energética.

e Seguridad y trazabilidad: Las configuraciones quedan documentadas como cdédigo,
permitiendo revisiones, controles de acceso y cumplimiento normativo de forma
sistematica.

Entre las herramientas comiUnmente utilizadas para IaC en entornos de IA se encuentran
Terraform, AWS CloudFormation, Azure Bicep, Pulumi o Ansible, que permiten integrar la
provisidn de infraestructura dentro de pipelines de CI/CD.

3. Configuracion de software y hardware para la eficiencia

energética

3.1. Optimizacion en hardware
Seleccidn de instancias en la nube vs. on-premise

e Factores clave: coste energético local, mix de generacidn eléctrica de la zona, eficiencia
del centro de datos, latencia, coste de mantenimiento.
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e La eleccidon entre infraestructuras en la nube y sistemas on-premise debe basarse en el
patrén de uso y en los requisitos del caso de uso. La nube resulta mas adecuada cuando
la carga de trabajo es variable o escalable, ya que permite ajustar dindmicamente los
recursos y evitar el sobredimensionamiento, lo que reduce el consumo energético
asociado a infraestructuras infrautilizadas. Ademas, es especialmente ventajosa para
proyectos en fases tempranas, pilotos o casos de uso con picos de demanda
intermitentes.

e Por el contrario, un sistema on-premise puede ser mas eficiente cuando las cargas de
trabajo son estables, intensivas y predecibles en el tiempo, y cuando la organizacién
dispone de un centro de datos propio optimizado energéticamente. En estos escenarios,
la amortizacidon del hardware y el control directo sobre la infraestructura pueden
traducirse en un consumo energético mds constante y, potencialmente, mas eficiente por
unidad de computo.

Ajustes de GPU/TPU y CPU para consumo eficiente

e Usar modos de bajo consumo cuando no sea necesario todo el rendimiento; ajustar
frecuencia de reloj, uso de memoria.

o Evitar sobreespecificar hardware: mejor usar hardware con las caracteristicas suficientes
para cumplir los requisitos en vez de hardware sobredimensionado que esté subutilizado.

e Actualizar drivers / firmware que permiten optimizaciones energéticas.
Técnicas de dynamic voltage and frequency scaling (DVFS)

e DVFS permite bajar o subir la frecuencia de CPU/GPU vy su voltaje asociado segun carga
de trabajo, reduciendo consumo energético cuando la carga es baja o moderada.

e En hardware moderno se puede configurar para que la frecuencia se ajuste
automaticamente / manualmente. Se debe medir impacto en latencia o throughput.

3.2 Optimizacion en software
Bibliotecas optimizadas (cuDNN, TensorRT, ONNX Runtime)

e Usar bibliotecas que aprovechan las capacidades hardware para acelerar calculo,
optimizar operaciones de convolucion, etc., de forma que se reduce tiempo de calculo y
por tanto energia consumida.

e ONNX Runtime, TensorRT, etc., ofrecen optimizaciones de inferencia, de fusién de
operaciones, de uso de memoria.
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Monitoreo y métricas de eficiencia (GPU utilization, FLOPs, kWh)

Tener métricas de utilizaciéon de hardware, uso de energia, nimero de operaciones en
punto flotante (FLOPs), para evaluar cuanta energia se consume por unidad de tarea (por
ejemplo por batch),

Usar herramientas de perfilado: por ejemplo monitorear el uso de GPU/CPU,
temperaturas, uso de memoria; registrar consumo energético si el hardware lo soporta.

En la especificacion CTN-UNE 71/SC 42/GT 1 "Evaluacion de la eficiencia energética de los

sistemas de inteligencia artificial" , desarrollada como parte del PNAV, se da un listado

exhaustivo de métricas y de herramientas de perfilado.

4. Ejecucion distribuida de modelos IA

4.1.

Arquitecturas de ejecucion distribuida (data parallelism, model parallelism,
federated learning)
Data Parallelism: consiste en replicar todo el modelo en multiples nodos (o GPUs),
repartir los datos entre ellos, hacer forward+backward y al final sincronizar los gradientes.
Es sencillo de implementar, tiene buen escalado si la comunicacion entre nodos no se
convierte en cuello de botella.
Un estudio reciente que compara frameworks como Horovod, PyTorch-DDP y DeepSpeed
muestra que para redes convolucionales (ResNet50, ResNet101, ResNet152) entrenadas
sobre ImageNet, se puede obtener una eficiencia de paralelizacién (“parallel efficiency”)
de mas del 0.85 usando hasta 256 GPUs, y alrededor de 0.75-0.80 con 1024 GPUs,
dependiendo del tamafio del modelo y del loader de datos.
Model Parallelism / Mixture of Experts (MoE): cuando el modelo es demasiado grande
para caber en una GPU, o cuando ciertas partes pueden paralelizarse de manera
especializada. Por ejemplo, el trabajo DeepSpeed-MoE muestra que se puede entrenar
modelos MoE mucho mas grandes con mejoras en costo de inferencia y de entrenamiento
comparado a modelos densos de equivalente calidad: mejoras de hasta 4.5x mas rapidos
y 9x mas econdmicos en inferencia para ciertos modelos grandes.
Otro articulo, Hybrid Tensor-Expert-Data Parallelism in MoE Training, presenta un
algoritmo hibrido (combinando paralelismo de datos, de tensores y de expertos) para
entrenar modelos MoE gigantes, con optimizaciones de comunicacién que reducen el
movimiento de datos innecesario.

Federated Learning (FL): permite entrenar modelos de forma distribuida en multiples

dispositivos finales (edge, loT, moviles), evitando la centralizacion de los datos. Este enfoque
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presenta ventajas claras en términos de privacidad y cumplimiento normativo, pero no es
universalmente eficiente ni recomendable en todos los escenarios. Su idoneidad depende de

multiples factores técnicos, operativos y energéticos.
Cuando Federated Learning si es recomendable

FL resulta adecuado principalmente cuando se cumplen una o varias de las siguientes

condiciones:
1. Datos altamente sensibles o sujetos a restricciones regulatorias
FL es especialmente util cuando:

e Los datos no pueden abandonar el dispositivo o dominio local (por ejemplo, datos

sanitarios, financieros, industriales).

e Existen restricciones legales o contractuales que limitan la transferencia de datos (GDPR,

soberania del dato).

En estos casos, el coste energético adicional del entrenamiento distribuido puede estar

justificado por los beneficios en privacidad y cumplimiento.

2. Gran volumen de datos distribuidos y alto coste de transferencia
FL es eficiente cuando:
e Elvolumen de datos crudos es elevado.

¢ Elenvio de datos al servidor central tendria un coste energético y de red superior al envio
periddico de parametros o gradientes del modelo.

Este escenario es tipico en dispositivos moviles o sensores con generacion continua de datos.
3. Modelos relativamente ligeros o con actualizaciones parciales

FL es mas viable cuando:

e Los modelos son compactos (pocos parametros).

o Se utilizan técnicas como actualizacién de capas parciales, compresion de gradientes o

aprendizaje incremental.
Esto reduce el coste computacional y el consumo energético en los nodos participantes.
4. Entrenamiento no critico en tiempo real

FL funciona mejor cuando:

10
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¢ No se requiere convergencia rapida.
e Setolera latencia en la sincronizacién de modelos.
¢ El entrenamiento se realiza en ventanas temporales amplias (por ejemplo, nocturnas).

Esto permite programar ejecuciones en periodos de menor carga energética o mayor
disponibilidad de energia renovable.

Cuando Federated Learning no es recomendable
Existen escenarios donde FL puede resultar claramente ineficiente o contraproducente:
1. Alta heterogeneidad de dispositivos
FL se vuelve problematico cuando:
e Los dispositivos participantes tienen capacidades muy dispares (CPU, memoria, bateria).
¢ Algunos nodos se convierten en stragglers, ralentizando el proceso global.

Esto incrementa el tiempo de entrenamiento, el nimero de rondas necesarias y el consumo
energético total.

2. Modelos grandes o muy profundos

FL no es eficiente cuando:

¢ El modelo tiene millones o miles de millones de parametros.

e El coste de transmitir gradientes o pesos supera al coste de mover los datos.

En estos casos, la comunicacidn se convierte en el principal cuello de botella energético.
3. Redes de comunicacidn inestables o costosas

FL es poco recomendable si:

e Laconectividad es intermitente.

e Elancho de banda es limitado.

e El coste energético de la comunicacidn es alto (por ejemplo, redes modviles de baja
eficiencia).

La sobrecarga de comunicacién puede anular cualquier ventaja de evitar la centralizacion de
datos.

11
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4. Necesidad de control estricto o trazabilidad completa
FL complica:
¢ La auditoria completa del proceso de entrenamiento.
e Lareproducibilidad exacta de resultados.
e El control fino de la calidad de los datos.

En entornos donde la trazabilidad y la reproducibilidad son criticas (por ejemplo, validaciones
regulatorias estrictas), FL puede introducir complejidad excesiva.

4.2, Herramientas y frameworks (Horovod, DeepSpeed, Ray, PyTorch DDP)

o DeepSpeed, desde su médulo MoE, ha demostrado no sélo escalabilidad sino también
reduccién del coste de inferencia y de entrenamiento comparado con modelos densos
equivalentes, gracias a su uso de experto-capacidades, sparsidad y optimizacion de
memoria.

o Frameworks comparativos: como se menciona en Large scale performance analysis of
distributed deep learning frameworks ... se ha comparado Horovod, DeepSpeed vy
PyTorch-DDP en entrenamiento de redes grandes, midiendo throughput, eficiencia de
escalado, rendimiento en validacion vs tamafio de batch, etc.

e Algunas implementaciones de federated learning integran compresién de comunicacion,
seleccion adaptativa de clientes, offloading, etc., para mejorar la eficiencia energética
Ejemplo: AutoFL optimiza tiempo de convergencia y eficiencia energética considerando
heterogeneidad del sistema.

4.3. Casos de uso y buenas practicas
Antes de escalar la ejecucion de modelos de IA en entornos distribuidos, es fundamental realizar
benchmarking y perfilado sistematico del sistema, con el objetivo de identificar cuellos de
botella y evaluar la eficiencia real del paralelismo introducido.

La literatura sobre sistemas paralelos destaca que un escalado eficiente no depende Unicamente
del nimero de nodos o aceleradores disponibles, sino de una correcta caracterizacién previa del
comportamiento computacional y de comunicacidn del algoritmo y su entorno de ejecucion. En
particular, se recomienda medir:

¢ Usode CPU, GPU y memoria en cada nodo.

12
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e Latencia de ejecucién y tiempos de sincronizacidn.
¢ Ancho de banda efectivo y volumen de datos intercambiados entre nodos.
¢ Impacto de la comunicacion frente al cdmputo en el rendimiento global.

Tal como se describe en estudios clasicos sobre planificacion de tareas en sistemas paralelos, la
ausencia de este analisis previo puede provocar escalados ineficientes, donde el incremento de
recursos no se traduce en mejoras proporcionales de rendimiento, e incluso incrementa el
consumo energético total debido a sobrecostes de sincronizacion y comunicacion.

Por tanto, las buenas practicas recomiendan:

e Analizar el patron de paralelismo del modelo (data parallelism, model parallelism,
hibrido).

o Identificar fases dominadas por cdmputo frente a fases dominadas por comunicacion.

e Ajustar la granularidad de las tareas y la estrategia de planificacién antes de aumentar el
numero de nodos.

Este enfoque permite tomar decisiones informadas sobre el escalado, maximizando el
rendimiento y evitando configuraciones que resulten energéticamente ineficientes.

5. Recomendaciones practicas y casos de aplicacion

5.1. Checklist para configurar entornos de ejecucion eficientes
Aqui una lista de control que puede usarse antes de entrenar / desplegar:

o Verificar versiones de librerias, dependencias, compatibilidad con hardware.

e Usar contenedores o entornos virtuales reproducibles.

¢ Medir consumo energético base con configuracidn estandar.

e Aplicar técnicas de optimizacién del modelo (cuantizacién, pruning, distillation).

e Seleccionar hardware acorde, evitar infrautilizacion.

e Planificar ejecucién en periodos de mayor energia renovable.

e Usar frameworks optimizados.

e Encaso de uso distribuido o blockchain, elegir mecanismos de consenso de bajo consumo.

o Documentar todas las configuraciones, métricas, versiones.

13
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5.2.

5.3.

Guia rapida de optimizacion de modelos
Analizar perfil del modelo: partes costosas computacionalmente, uso de memoria,
operaciones que se puedan optimizar (convoluciones, atencion, etc.).

Aplicar pruning: eliminar neuronas o conexiones sin mucho impacto en precision.
Cuantizacion: reducir precision (por ejemplo de FP32 a FP16, INT8) si se tolera.
Distillation: entrenar un modelo mas ligero que imite a otro mas pesado.
Sparsity: usar modelos que exploten estructuras parciales de ceros.

Validar la pérdida de precision vs ahorro energético en escenarios reales.

Caso practico: despliegue distribuido eficiente con Blockchain sostenible

Un posible caso practico podria ser:

Entrenamiento federado de un modelo (por ejemplo para salud o loT) donde los nodos
locales entrenan con sus propios datos, usando versiones optimizadas de modelo ligero.

Uso de Blockchain permissionada para coordinar las actualizaciones del modelo, verificar
integridad, registrar auditoria.

Ejecucién del entrenamiento/inferencia en momentos del dia con alto porcentaje
renovable eléctrico.

Monitorizacidén constante de consumo energético, métricas de rendimiento.

Evaluacién comparativa: costo energético y rendimiento vs solucion centralizada
convencional.

14
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